Math 434 Assignment 2

Due April 12

Assignments will be collected in class.

- 1. A set $X \subseteq \mathbb{N}$ is computable if there is a computer program in your favourite language which, on input *n*, outputs 0 is $n \in X$ and outputs 1 if $n \notin X$. (A computer program is a finite string of symbols.) Using an argument involving cardinality, prove that there is a set which is not computable.
- 2. For κ, λ infinite cardinals with $\lambda < \kappa$ prove that $|\{x \subseteq \kappa : |x| = \lambda\}| = \kappa^{\lambda}$.
- 3. A class function $f:ORD \rightarrow ORD$ is normal if it is order-preserving and continuous. Continuous means that for any limit ordinal λ we have that

$$f(\lambda) = \lim_{\alpha < \lambda} f(\alpha).$$

- (a) Given any normal class function f, prove that for all α , there is $\beta \ge \alpha$ such that $f(\beta) = \beta$.
- (b) Show that the function $\alpha \mapsto \omega \cdot \alpha$ is order-preserving and continuous.
- (c) 0 is the least fixed point of this function. Show that ω^{ω} is the next fixed point.
- 4. Prove that $2^{\aleph_0} \neq \aleph_{\omega}$.
- 5. Prove that if \mathcal{U} is an ultrafilter on X, and $X = X_1 \cup \cdots \cup X_n$, then some X_i is in \mathcal{U} .
- 6. Prove that if an ultrafilter contains a finite set, then it is principal.
- 7. Let \mathcal{U} be an ultrafilter. Let $(x_i)_{i\in\omega}$ be a sequence of real numbers in [0,1]. Show that there is a unique $x \in [0,1]$ such that for all $\epsilon > 0$, the set $\{i : |x x_i| < \epsilon\}$ is in the ultrafilter. (We call x the \mathcal{U} -limit of this sequence; note that every sequence has a limit in this sense.)
- 8. In an election there is a finite set A of candidates and a countable (possibly finite) set V of voters. Let L(A) be the set of linear orderings of A. A social welfare function is a function

$$F: L(A)^V \to L(A).$$

That is, it takes as input an ordering, for each voter, on the candidates A (these are the votes), and outputs a linear order on A which is the outcome of the election.

Three desirable conditions are:

Unanimity: If all of the voters enter the same ranking, then this is the outcome.

- **Independence of irrelevant alternatives:** The ordering of two candidates a and b in the outcome only depends on the ordering of a and b by each voter, and not on how the voters ranked the other candidates.
- **Non-dictatorship** There is no voter $v_0 \in V$ such that the outcome of the election is just the preferences of v_0 .

We will prove in class that if F is a social choice function satisfying **Unanimity** and **Independence of irrelevant alternatives**, and there are at least three candidates, then there is an ultrafilter \mathcal{U} on V such that $F((R_v)_{v \in V}) = S$ if and only if $\{v \in V : R_v = S\} \in \mathcal{U}$. In particular, if V is finite, then \mathcal{U} is principal and so there there is a dictator.

If the set of voters is countably infinite, say $V = \omega$, use ultrafilters to show that there is a social choice function satisfying **Unanimity**, **Independence of Irrelevent** Alternatives, and with no **Dictator**.

So ultrafilters give a good voting scheme with infinite sets of voters.